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A method of analysis of NMR spectra based upon degenerate-state perturbation theory
is developed. The technique can be applied to the analysis of NMR spectra of sets of nuclei
which are magnetically inequivalent, ¢. e., sets of nuclei which have different couplings between
chemically equivalent groups. The method is illustrated by analysis of the spectrum of 1-
indanone, which is of the type AA’BB'. Satisfactory results can be obtained by a second order
analysis, even for quite strongly coupled spectra. Closed form expressions have been derived
for the AA’BB’ spectrum which are correct to second order.

Fir die Analyse von Kernresonanzspektren wird eine Methode angegeben, die auf der
Stérungsrechnung fiir entartete Systeme beruht und die auch im Fall mehrerer Kopplungs-
konstanten zwischen zwei unter sich chemisch dquivalenten Gruppen von Protonen gilt. Als
Beispiel dafiir wird das Spektrum des 1-Indanons (Typ AA’BB’) behandelt, wobei bereits die
zweite Niherung befriedigende Ergebnisse liefert und in geschlossener Form angegeben wird.

Sur base de la théorie des perturbations des états dégénerés, nous avons développé une
méthode pour analyser des spectres NMR. Cette méthode s’applique & des molécules, qui ont
de couplages différents entre plusieurs groupes d’atomes équivalents. Le procédé est illustré
par Panalyse du spectre de 1-indanone du type AA’BB’. Le second ordre du caleul rend de
résultats satifaisants, méme au case de couplages assez forts. Des expressions closes, correctes
jusqu’au second ordre, sont dérivées pour le spectre AA'BB’.

1. Introduetion

The essential features involved in the analysis of NMR spectra have been
clearly understood for quite some time, and have been discussed at length in such
standard reference works as PoprLE, SCHNEIDER, and BERNSTEIN [11]. An excel-
lent review devoted entirely to NMR spectrum analysis has also been given by
Corro [4]. The assignment of transitions can often be simplified by the use of
such techniques as moment analysis [2], double irradiation [I], excitation of
multiple quantum transitions [74], isotopic substitution [72]; and group theoret-
ical methods are frequently useful for the simplification of the calculations [9].
However, the basic problem remains one of a solution of secular equations for the
transition frequencies and intensities based on a set of estimated parameters. The
successive adjustment of these parameters to fit the calculated with the experi-
mental spectrum can be accomplished automatically by computer analysis in
many cases [13, 14].

There are limitations on the number of nuclei which can be treated by such
calculations, and it appears that about 6 — 8 nuclei constitutes a practical upper
limit on the number of magnetic nuclei which can be conveniently handled in a
complete treatment with modern computational facilities. Although a complete
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solution is to be preferred if feasible, one may have to rely on approximation
methods in many cases. A freatment based upon perturbation theory has been
given by AxpErsow [7] and applied with success to the analysis of the spectrum
of ethyl alcohol by ArxorD [3]. ANDERSON’S approach can be used to analyze the
NMR spectrum. of any number of sets of equivalent nuclei, subject to the restric-
tion that there is only one coupling constant between nuclei in any given pair of
sets, It is well known that in such a case, the spectrum is independent of the
coupling between nuclei within a set.

It is equally well known that much more information can be obtained from
spectra which show magnetic inequivalence between chemically equivalent sets.
In such cases the coupling between chemically equivalent nueclei can be deter-
mined by a complete analysis of the spectrum. The best known example of this
oceurs in the A,B, spectra of molecules which are rigid so that averaging of the
coupling between the A and B nueclei cannot occur. The above-mentioned pertur-
bation cannot be applied in such cases. It is the purpose of this paper to present a
method of analysis based upon degenerate-state perturbation theory which is
sufficiently general to include the case of magnetic inequivalence.

2. Outline of the Method
The appropriate Hamiltonian operator for NMR spectrum. analysis is [11],

Hzgw L (0) + 2 Jy L ()X () (1)

i<q
1 . . .
where ;= 5 Vi (1 —o3) Hy. y¢ is the magnetogyric ratio of the nucleus in

question, and ¢; is the electronic screening constant. The first term in Eq. (1) thus
represents the energy of interaction of the nucleus with the externally applied
magnetic field, H,, and the second term gives the energy of nuclear spin-spin
coupling as represented by the magnitude of the constant Jy;. The state functions
are taken to be the products of spin functions of the individual nuclei and are
clagsified with respect to the expectation value of the total z-component of spin

> I, ().

Following the usual perturbation theory procedure, H is assumed to be of the
form,

H-—HO 4 7 HD 3)
Using the definition, I, = I, + ¢ I, the spin coupling term can be written
2y Ue (6) I () + & Ls (0) I () + & I (3) I ()] -

<7
It is obvious that no mixing of energy states occurs as a result of the first term,
so that it is convenient to group it with the external field interaction term to
obtain, for the zeroth-order Hamiltonian,
H® = >y I (3) + 2, Ji5 I (3) I () - (4)
i i<<7
The perturbation Hamiltonian is then taken to be
HO =% Jy (L4 () I () + I 6) I+ ()] - (5)

i<
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The appropriate matrix elements can readily be constructed using simple
rules {4, 11]. Due to the nature of the perturbation problem involving degenerate
zeroth-order states, it is doubtful that convenient closed form expressions for the
energies are possible. A considerable factorization is accomplished by the above
choice of a zeroth-order Hamiltonian, however, so that much smaller secular
equations are involved.

Results which are correct to the second-order have been given by KEMBLE
[8], and were used in the present investigation. The third-order results have been
derived similarly, with the energy being given as a root of the equation

TO (ki ki) ED + U® (k; ki) BD + 3 Gkl K" TO " ki) =0 (6)

it

where the matrix @ is defined by

(E(l)___E(l,),) —_ —
G (kL K'Y = Z Z (E"(‘;)_EZ);?H(I) (kL K1Y HO (B k') +
B o#r U PR Y]
. ﬁ(l) (k 1 ; i l') E(l) (k/ l/ ; k// l”) ﬁ(ﬂ (k/l lll ; A l/n)
R T —EO)EO 5 -
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The notation corresponds to that used by KemMBLE, and it is necessary to sum Eq.
(6) only over the states which remain degenerate in the first order.

It might be noted that the zeroth-order wave functions, as contained in U®,
are completely determined in the first order only if the degeneracy is entirely
removed ; otherwige, the calculation must be extended to the second order for
their determination. Similarly, the first order corrections, UM, in general, neces-
sitate a calculation of the third order energies. Thus, it will not prove very useful
to rely on the intensities for an assignment of transitions in any but the most
simple cases.

3. The AA’ BB’ System

Although mathematically one could treat magnetic inequivalence in an AA’'B
system, the simplest case in which it oceurs in practice is in the AA’BB’ spectrum.
(The obvious convention used here is the designation of nuclei which differ only
through magnetic inequivalence by primes.) The characteristics of this type
spectrum have been investigated by several authors [4, 6, 9, 10] with explicit
expressions for the A,X, limit having been given by McConngLL, MoLrAN, and
ReiLry [9]. Of the 54 transitions possible for a general four-spin system, only 24
are observed, and these oceur as two sets of “mirror images” which are symmetric
about (va + vg)/2.

The calculation of the spectrum based upon the method outlined in the last
section is quite simple in this case. The straight-forward evaluation of the matrix
elements of H® shows that the largest set of secular equations which must be
solved is of order 2 x 2. Thus, explicit expressions can be obtained for the transi-
tion frequencies using the perturbation theory approach. These energies, correct
to second order, are shown in Tab. 4 together with the appropriate zeroth-order
wave functions. The notation introduced by McConxEeLr, McLraN, and RErLLy
[9] is used throughout:

K =Janr + Jw L=dJsp — Jan
M= Jpn— Jypr N=Jrxp+Jasn.
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Table 1. Hnergies of the AA’ BB’ system, correct to second order

State | XI. o B, B, 7
1 2 XX va + vB + 0 0
+3+K+5 N
1 1 a2
2 1 —— (v 4 ottt M LK - M &
| V2 ﬁT ¢ * VA"VB+%M
‘ + aofo)
3 1 ! (xaxof8 va+ 2 M LK - M _*%Li
— - AT A - I - —_—
V2 ‘ * va—~ve+s M
~ axflo)
1 1
4 1 —= (xfocor + v — + M LK+ M SO el S
V2 * * va — s+ 4 M
+ Booxx)
1 _17e
5 1] —=(afocx — ve -+ M -3 (K + M) —t
V2 * ¢ VA“'VB‘,"%‘M
— Poox)
1 I AT
6 0 aafp va — vp - 0 8(1N L) +
+3K-3iN va = vst+ 5K —3(N+L)
N (N + Ly
va ~vs+5K - 3(N - L)
7 0 L_(zxﬁaﬂ—l— ~*K+3%L 0 :+1(N~L)2
V2 4 2 41 8
+ Barfor) { (N+L - K) }
FN+L—-K2— (v —vs)?
8 0 —1—(ocﬁﬁ(x+ -+k-%iL 0 _ 2+L(N+L)2
V2 * ? 47, '8
+ Boaxf) { (N-K-1I) }
GV =K~ L)~ (vs - vo)?
1 — 1
9 0] — («ffx — ~-1K-1L 0 S Sl
vz O R IR +L
— BoxfB)
1 1 2
10 0| = (afaff - -+K+1L 0 M
= %—K+L
- fofx)
1y~
11 0 BPocox — s + Ve + 0 g (V- Ly +
+iK-1N —vatrnt+ K~ (N +1L)
. W+ Ly
" —vatveti K-L(N -L)
1 1 a2
12 | 1| —(xffp + -2 M | L(E+HM —
V2 s ¢ ) va—ve — 2 M
+ pafp)
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Table 1 (Continued)

State | 2. o E, E, 7,
1 L2
13 | 1 (afBB - | - iM | -i(E 4+ &l
V2 : YA VB — %M
- Bopp)
1 N2
4 | -1 BBxp + —m+M | LE-M N e A
i —vs+vs +EM
| + BBy ]
! 1 r[ | 1z
15 | —1| —=(fBxf—~ = —wa+iM |-LE-M) s
V2 —va v+ 3 M
— Bppex)
|
16

-2 Jifefold —ya — Ve + | 0 0
! : %K+%Nt ’

Based upon these zeroth-order wave functions, the spectrum given in Tab. 2 can
be derived. It will be noted that there are slight asymmetries in the spectram to
this degree of approximation, which depend on the magnitude of M compared to
2 ‘ VA— VB | .

As a specific illustration of the method, the aliphatic part of the spectrum of
1-indanone, .

has been calculated, and is shown in Fig. 1 and 2, together with the experimental
spectrum. This spectrum (60 Mc) has been previously analyzed [7], with the
reported results

Jaar = 1.9 cps
Jep = 3.8 cps
JAIBI = JAB = 8.9 cps
JAIB = JAB' =3.5 cps

va = var = — v = —vp = 15.5 cps [relative to (v4 + v5)/2] .

The assignment of A and B protons was made on the basis of the broadened
downfield portion of the spectrum, which was attributed to unresolved coupling
of the B protons with those of the aromatic ring.

Fig. 1 shows the result of calculations based on the zeroth-order wave functions.
It appears that an assignment might be made on the basis of the energies alone.
The calculations were extended to third order so that the first order intensities
could be evaluated as shown in Fig. 2. It is interesting to note that even in a
fairly strongly coupled case such as this, the third order corrections shifted the
frequencies by 0.2 cps at most, with most peaks less effected. For this reason the
third-order spectrum is not shown. It is in essence the same as the second order
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spectrum, with the slight asymmetries mentioned above between the A and B sets

further reduced.

In general, it will still be necessary to use numerical methods to diagonalize

the smaller secular determinants, although in the case of the AA’BB' spectrum con-
sidered. here, the energies can be expressed to any desired degree of approximation
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in closed form. The determination of the eigenvectors requires higher order
approximations, so that the method is most readily applied to spectra which are
sufficiently close to first order that an assignment of the transitions can be made
on the basis of the frequencies alone.
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